Systoles of Arithmetic Hyperbolic Surfaces and 3–manifolds

نویسنده

  • BENJAMIN LINOWITZ
چکیده

Our main result is that for any positive real number x0, the set of commensurability classes of arithmetic hyperbolic 2– or 3–manifolds with fixed invariant trace field k and systole bounded below by x0 has density one within the set of all commensurability classes of arithmetic hyperbolic 2– or 3–manifolds with invariant trace field k. The proof relies upon bounds for the absolute logarithmic Weil height of algebraic integers due to Silverman, Brindza and Hajdu, as well as precise estimates for the number of rational quaternion algebras not admitting embeddings of any quadratic field having small discriminant. When the trace field is Q, using work of Granville and Soundararajan, we establish a stronger result that allows our constant lower bound to instead grow with the area/volume. As an application, we establish a systolic bound for arithmetic hyperbolic surfaces that is related to prior work of Buser–Sarnak and Katz–Schaps–Vishne. Finally, we establish an analogous density result for commensurability classes of arithmetic hyperbolic 3–manifolds with a small area totally geodesic surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mikhail v. Belolipetsky List of Publications

[1] Estimates for the number of automorphisms of a Riemann surface, Sib. Math. J. 38 (1997), no. 5, 860–867. [2] On Wiman bound for arithmetic Riemann surfaces, with Grzegorz Gromadzki, Glasgow Math. J. 45 (2003), 173–177. [3] Cells and representations of right-angled Coxeter groups, Selecta Math., N. S. 10 (2004), 325–339. [4] On volumes of arithmetic quotients of SO(1,n), Ann. Scuola Norm. Su...

متن کامل

The length spectra of arithmetic hyperbolic 3-manifolds and their totally geodesic surfaces

We examine the relationship between the length spectrum and the geometric genus spectrum of an arithmetic hyperbolic 3-orbifold M . In particular we analyze the extent to which the geometry of M is determined by the closed geodesics coming from finite area totally geodesic surfaces. Using techniques from analytic number theory, we address the following problems: Is the commensurability class of...

متن کامل

Non-simple Geodesics in Hyperbolic 3-manifolds

Chinburg and Reid have recently constructed examples of hyperbolic 3manifolds in which every closed geodesic is simple. These examples are constructed in a highly non-generic way and it is of interest to understand in the general case the geometry of and structure of the set of closed geodesics in hyperbolic 3-manifolds. For hyperbolic 3-manifolds which contain an immersed totally geodesic surf...

متن کامل

Systoles of Hyperbolic 4-manifolds

We prove that for any ǫ > 0, there exists a closed hyperbolic 4manifold with a closed geodesic of length < ǫ.

متن کامل

Lengths of Systoles on Tileable Hyperbolic Surfaces

The same triangle may tile geometrically distinct surfaces of the same genus, and these tilings may determine isomorphic tiling groups. We determine if there are geometric differences in the surfaces that can be found using group theoretic methods. Specifically, we determine if the systole, the shortest closed geodesic on a surface, can distinguish a certain families of tilings. For example, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015